

Estimation of Demand and Market Share Dr. Peter Belobaba

Istanbul Technical University Air Transportation Management M.Sc. Program Network, Fleet and Schedule Strategic Planning Module 11: 1 April 2015

Lecture Outline

Air Travel Demand Models

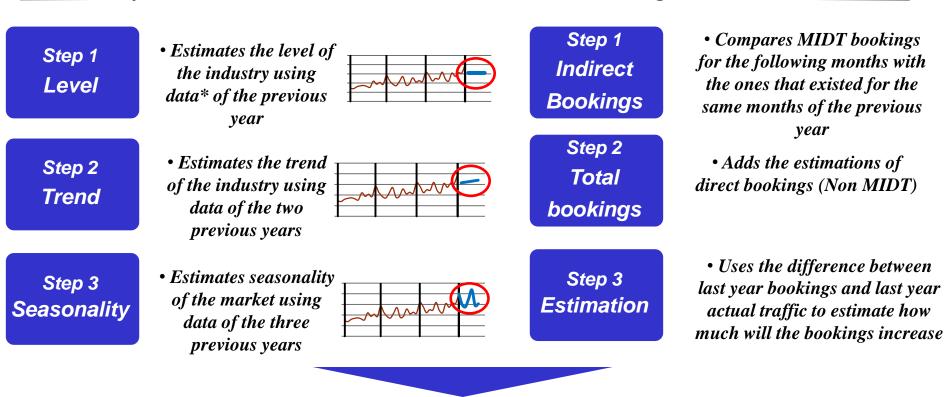
- Time series vs. causal models for demand forecasting
- Simple Market Demand Function
- Demand Segmentation

Market Share Estimation

- Market Share vs. Frequency Share "S-Curve" Model
- Quality of Service Index (QSI) Model
- Logit Models of Passenger Choice

Air Travel Demand Models

- Demand models are mathematical representations of the relationship between demand and explanatory variables:
 - Based on our <u>assumptions</u> of what affects air travel demand
 - Can be linear (additive) models or non-linear (multiplicative)
 - Model specification reflects expectations of demand behavior (e.g., when prices rise, demand should decrease)
- A properly estimated demand model allows airlines to better forecast demand in an O-D market:
 - As a function of changes in average fares
 - Given recent or planned changes to frequency of service
 - To account for changes in market or economic conditions


Demand Forecasting Methods

- <u>Time series methods</u> extrapolate patterns in historical booking data to forecast demand
 - Statistical methods to estimate recent growth/declines
 - Adjustment for known seasonality and cycles
- <u>Causal methods</u> include additional explanatory variables that can affect future demand
 - Actual advance booking data for future dates
 - Additional "exogenous" variables such as economic growth, expected changes in price or frequency
 - Adjustment for changes to competitive conditions

Example: Combined Model for Estimating Total O-D Demand in a Market

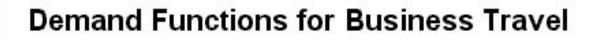
Booking Model

History Model

By combining the results from the two models, the tool estimates the market size for the following 6 months

Source: LAN Airlines (2012)

Simple Market Demand Function


• Multiplicative model of demand for travel O-D per period:

 $\mathbf{D} = \mathbf{M} \mathbf{x} \mathbf{P}^{\mathbf{a}} \mathbf{x} \mathbf{T}^{\mathbf{b}}$

- where: M = market sizing parameter (constant) that represents underlying population and interaction between
 - cities
- P = average price of air travel
 T = total trip time, reflecting changes in frequency
 a,b = price and time elasticities of demand
- We can estimate values of M, a, and b from historical data sample of D, P, and T for same market:
 - Previous observations of demand levels (D) under different combinations of price (P) and total travel time (T)

Multiple Demand Segments

	Business Air Travel Demand	Personal Air Travel Demand
First Class	D _{fb}	D _{fp}
Coach Class	D _{cb}	D _{cp}
Discount Class	D _{db}	D _{dp}


```
D_{fb} = M_b I_f P_f^{a1} T_f^{b1} P_c^{c1}
```

 $\mathbf{D}_{cb} = \mathbf{M}_{b} \mathbf{I}_{c} \mathbf{P}_{c}^{a1} \mathbf{T}_{c}^{b1} \mathbf{P}_{f}^{c1}$

Where M_b = the market sizing parameter for business travel demand (constant) I_f , I_c = constant image factors for first and coach class services P_f , P_c = prices of first and coach class services T_f , T_c = total travel times for first and coach class services a1 = price elasticity of demand for business travelers b1 = time elasticity of demand for business travelers c1 = cross-elasticity of business travel demand for first class service with respect to the price of coach class service, and vice versa

Demand Functions for Personal Travel

$$\mathbf{D}_{cp} = \mathbf{M}_{p} \mathbf{I}_{c} \mathbf{P}_{c}^{a2} \mathbf{T}_{c}^{b2} \mathbf{P}_{d}^{c2}$$

$$\mathbf{D}_{dp} = \mathbf{M}_{p} \mathbf{I}_{d} \mathbf{P}_{d}^{a2} \mathbf{T}_{d}^{b2} \mathbf{P}_{c}^{c2}$$

Where M_p = the market sizing parameter for personal travel demand (constant) I_c , I_d = constant image factors for coach and discount class services P_c , P_d = prices of coach and discount class services T_c , T_d = total travel times for coach and discount class services a2 = price elasticity of demand for personal travelers b2 = time elasticity of demand for personal travelers c2 = cross-elasticity of personal travel demand for coach class service with respect to the price of discount class service, and vice versa

Issues in Price Elasticity Estimation

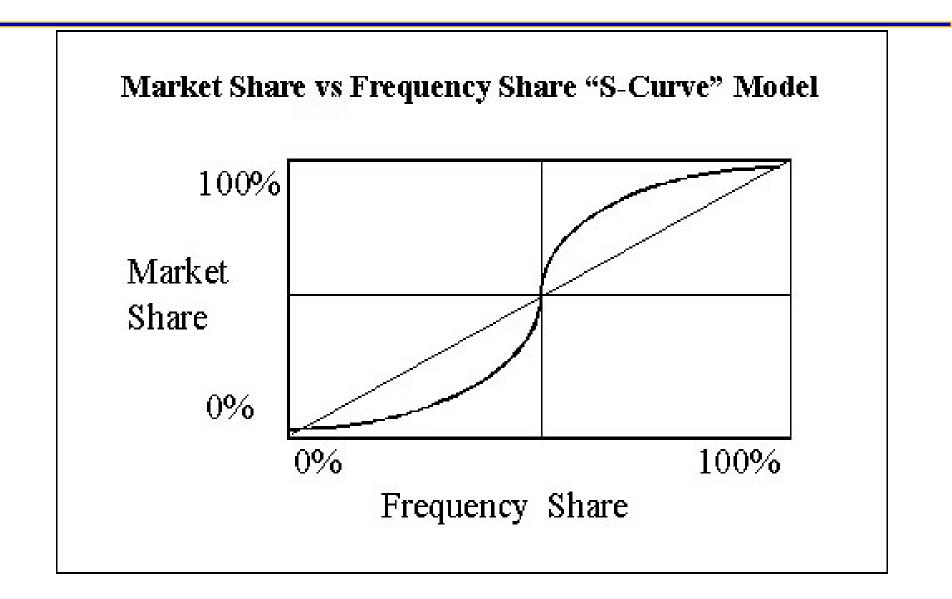
Sources of data

- Airlines have detailed historical booking data by fare class
- US DOT 10% ticket sample provides flown ticket data for US domestic markets -- passengers and average fare by airline
- But, all available data reports traffic flown, NOT "demand"

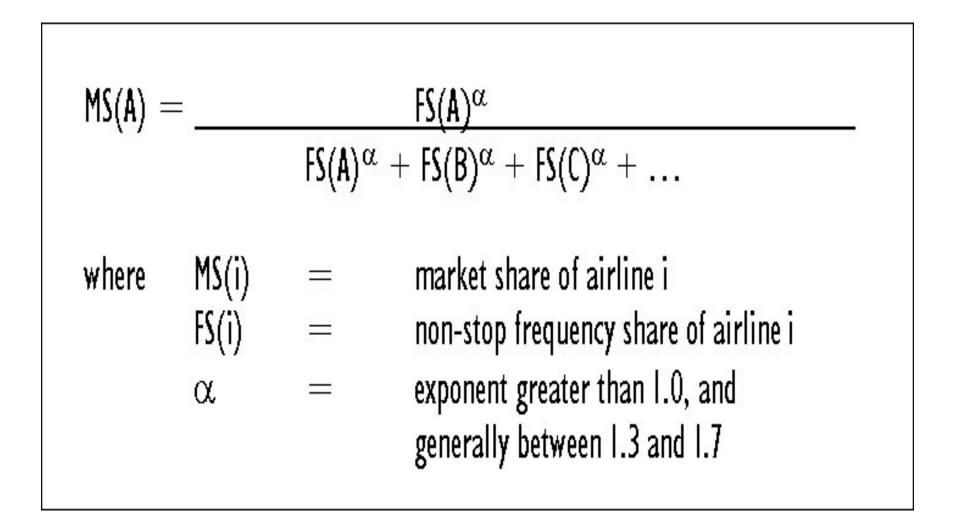
Measurement issues

- Ideally, need a dataset with no change to schedules, competitors, economic conditions
- Price and service attributes of travel substitutes (esp. short-haul)
- Cross-sectional, time series, or panel data samples
- Demand segmentation and revenue management impacts
- Identification problem supply affects demand
- Focus on one airline (or airport) will exaggerate elasticity estimates

Airline Competition


- Airlines compete for passengers and market share based on:
 - Frequency of service and departure schedule on each route served
 - Price charged, relative to other airlines, to the extent that regulation allows for price competition
 - Quality of service and products offered -- airport and in-flight service amenities and/or restrictions on discount fare products
- Passengers choose among flight schedules, prices and product quality to minimize air travel disutility:
 - Each passenger would like to have the best service on a flight that departs at the most convenient time, for the lowest price

• Given estimate of total demand for air travel in an O-D market, what is each airline's market share?


- Several modeling approaches can be used to estimate airline market shares:
 - "S-curve" model of market share/frequency share
 - Extensions to "Quality of Service Index" (QSI Model)
 - Logit Models used in profit estimation software systems

- <u>Rule of Thumb</u>: With all else equal, airline market shares will approximately equal their frequency shares.
- But there is much empirical evidence of an "S-curve" relationship as shown on the following slide:
 - Higher frequency shares are associated with disproportionately higher market shares
 - An airline with more frequency captures all passengers wishing to fly during periods when only it offers a flight, and shares the demand wishing to depart at times when both airlines offer flights
 - Thus, there is a tendency for competing airlines to *match* flight frequencies in many non-stop markets, to retain market share

MS vs. FS "S-Curve" Model

S-Curve Model Formulation

Example: S-Curve Market Share Model

- Single O-D market, short-haul non-stop route
 - Two airlines, each offer 4 daily flights with 120 seat aircraft
 - Assume prices and service quality are equal
- Total daily demand (PDEW) is a function of frequency PDEW = 10000 * [4 + 4 /TOT FREQ)^{-1.7}
- S-curve model of MS vs. FS with alpha = 1.5

	<u>AIRLINE A</u>	<u>AIRLINE B</u>
AIRCRAFT CAPACITY	120	120
TOTAL DAILY PAX 7	775	
FLIGHTS per day	4	4
FREQUENCY SHARE	50.0%	50.0%
MARKET SHARE	50.0%	50.0%
AIRLINE PAX PER DAY	387.7	387.7
AVE. LOAD FACTOR	80.77%	80.77%

Airline A Adds 1 New Flight

• Airline A expands its schedule to gain market share

	<u>AI</u>	<u>RLINE A</u>	<u>AIRLINE B</u>
AIRCRAFT CAPACITY		120	120
TOTAL DAILY PAX	792		
FLIGHTS per day		5	4
FREQUENCY SHARE		55.6%	44.4%
MARKET SHARE		58.3%	41.7%
AIRLINE PAX PER DAY		461.6	330.3
AVE. LOAD FACTOR		76.94%	68.82%

Airline A gains passengers and market share

- But its load factor decreases
- Note that load factor of Airline B decreases even more!
- If we assume both airlines have a 75% Break-Even Load Factor, then Airline A's change causes Airline B to become unprofitable

Discussion: How Should Airline B Respond?

• What should Airline B do to regain profitability?

- Without changes to price, image, service quality
- Schedule and capacity changes only

	AIRLINE A	<u>AIRLINE B</u>
AIRCRAFT CAPACITY	120	120
TOTAL DAILY PAX	792	
FLIGHTS per day	5	4
FREQUENCY SHARE	55.6%	44.4%
MARKET SHARE	58.3%	41.7%
AIRLINE PAX PER DAY	461.6	330.3
AVE. LOAD FACTOR	76.94%	68.82%

• Quality of Service Index (QSI)

- Values an airline's set of flights offered in an O-D market, relative to competitors
- Extension of simple MS/FS model to include one-stop and connecting flight options
- Used to estimate the markets share potential of new routes and incremental flights
- Developed in the 1960s, widely used by airlines for planning and scheduling

QSI Market Share Example

• QSI for Buenos Aires (EZE) to Bogota (BOG)

	Number	Weight	Index
Daily Nonstops	1	1.0	1.00
One-stop Flights	2	0.33	0.66
Connections	8	0.03	0.24
Market QSI			1.90

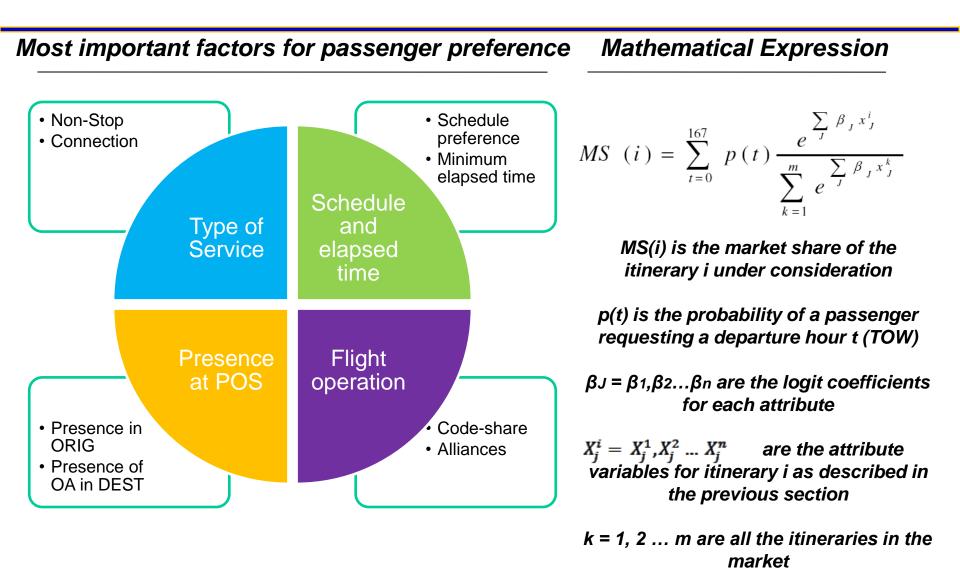
- Current share of 1 non-stop flight = 1.0/1.9 = 53%
- Impact on QSI of additional non-stop flight = 1.0
- New Market QSI is 2.90

Impacts of Adding a Second Non-stop Flight

- Total demand EZE-BOG estimated as 250 PDEW
 - (Assume new frequency stimulates demand by 10%)
- QSI share for new non-stop flight

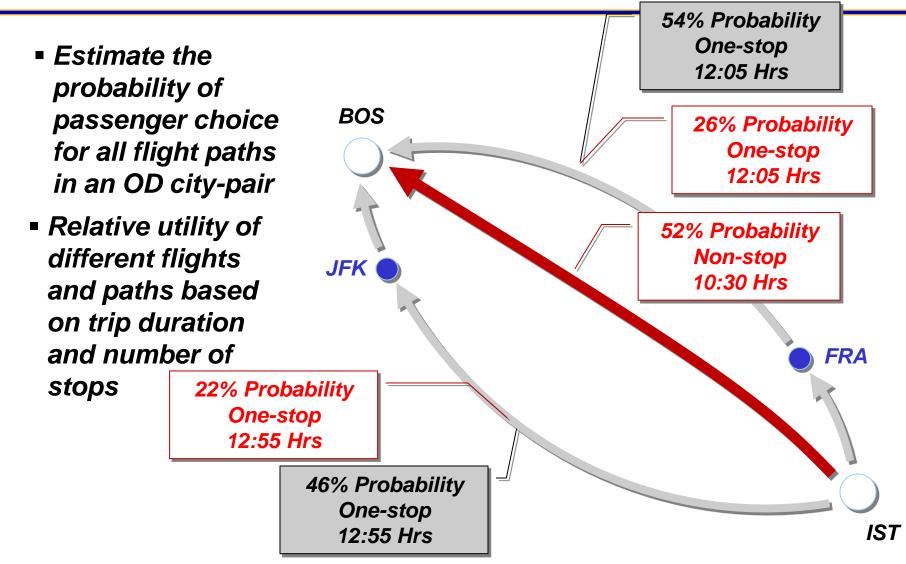
= 250 x (1/2.90) = 250 x 0.345 = 86 passengers/day

- Impacts on existing non-stop flight
 - Previous share 227 x (1/1.90) = 227 X 0.53 = 120 pax
 - New share 250 x (1/2.90) = 86 pax/day
- Overall effect of adding a 2nd non-stop flight
 - Increase in total pax from 120 to 2 x 86 =172/day
 - Decrease in loads per flight from 120 to 86 = 34


Logit Models for Market Share Estimation

- "Discrete choice" models use logit formulation to further extend QSI approach
 - Probability of passenger choice based on relative utilities of different flights/airlines in an O-D market

• Utilities of flight alternatives can include:


- Path quality index (non-stop, 1-stop, connection) and/or actual elapsed trip times
- Airline service quality and passenger preferences
- Possible fare differences, frequent flyer programs, etc.
- Historical input data needed to calibrate choice parameters

Logit Model Market Share Estimation

Source: LAN Airlines (2012)

Logit Passenger Choice Model: New IST-BOS Non-stop Flight

